Wednesday 25 January 2017

Sampling-event standard takes flight on the wings of butterflies


Data collected from systematic monitoring schemes is highly valuable. That's because harvesting species data from a given set of sites repeatedly over time using a well-defined sampling effort opens the door to key ecological analyses including phenology, population trends, changes in community structure and other metrics related to a range of Essential Biodiversity Variables (EBVs).

A couple of years ago there was no faithful way to universally standardize data from systematic monitoring schemes. This meant that researchers using this kind of data would need to spend a lot of time deciphering it first. Their job would get even more complicated when trying to integrate data from various heterogeneous sources, each storing their data in different formats, units, etc.

Today, the situation looks much better thanks to a massive collaboration between GBIF, EU BON partners and the wider biodiversity community whose aim was to enable sharing of "sampling-event datasets".  

Indeed, one of the most successful outcomes from this collaboration has been the development of a standardized format for systematic butterfly monitoring schemes.

The format has been developed in close collaboration with the EU BON partners Israel Pe'er (GlueCAD- Biodiversity IT) and his son, Dr. Guy Pe'er, (UFZ), who works with systematic monitoring data.  The format can be adapted to many other types of systematic monitoring, for many taxonomic groups, as it ensures the following important conditions for researchers are met:
  • all visits to a given site are known, including those with no sightings, as this allows for analyses of species phenology, etc.
  • the range of species being recorded during sampling is explicit, as this allows for true absence to be determined.
  • the location hierarchies can be specified (e.g. the location is a fixed transect or subsection of a transect), as this allows users to group observations by location.
  • enough detailed information about the sampling effort and sampling area (e.g. units of measurement) are captured, as this allows users to calculate density or convert between units of abundance.
The Israeli Butterfly Systematic Monitoring Scheme (BMS-IL) dataset has already been published openly using this format. I'd like to invite everyone to explore this exemplar dataset from either the EU BON IPT or via GBIF.org.

In the future, I hope that GEO BON's Guidelines for Standardized Global Butterfly Monitoring will incorporate a new recommendation that all monitoring programs use this standardized format for sharing their data. Without a doubt this will make researchers' jobs easier when integrating data from several butterfly monitoring programs for their analyses. It will also enable integrating the data with standardized sampling-event data from other disciplines as well.

Ideally, making the data openly available in a standardized format also leads to new collaboration. So far, BMS-IL data has been used to assess trends in the abundance and phenology of Israel's butterflies for the benefit of conservation or climate change research for example. I would like to encourage you to reach out to Israel and Guy Pe'er if you have any novel ideas on how to reuse their newly standardized data in order to help unlock its full potential.

No comments:

Post a Comment